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Abstract— Job shop scheduling (JSS) is a problem which involves an assignment of a set of tasks to the machines in a predefined 
sequence in order to optimize one or more objectives considering job performance measures of the system.  It’s a multi-objective, 
multi-criteria optimization problem. A job shop environment consists of ‘n’ jobs. Each job has a given machine routine in which some 
machines could be given a “miss”. The JSS could be considered as a queuing system that consists of machines and jobs where each 
job demands a specified sequence (routing) on the machines and involves certain amount of processing time. In the dynamic JSSP, 
the problem size is not fixed. The jobs arrive randomly and addition of each job increases problem size exponentially. The optimal 
resource scheduling/re-scheduling for a mechanical manufacturing shop in reasonable computational time is achieved using particle 
Swarm Optimization (PSO). PSO (Particle swarm optimization) is a meta-heuristic method that calculates a combination of the 
sequence of the jobs yielding the least processing time or the make span (Best completion case)  
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I. INTRODUCTION  
The machine Scheduling problem has been the 

one of the oldest problems of its kind. The inter-
disciplinary nature of the problem expands its application 
in manufacturing systems, computer design, logistics etc. 
Among these, the traditional job shop scheduling 
problem is most frequently encountered.  

The traditional JSSP has a fixed problem size, 
each job having a pre-defined sequence of machines and 
processing time. Under standard assumptions the 
processing time shall include the setup time as well. The 
problem is to find a solution that gives the minimum 
possible scheduling time for the given jobs. Since JSSP is 
one of the hardest combinatorial optimization problems, 
the solution attracts employing meta-heuristic methods 
because of its innate inflexible nature. 

The Dynamic JSSP is a new method to break 
away from the static nature of the JSSP solution. Here the 
system system is able to accommodate a new job that 
needs to be added to the system at any random time. The 
complexity here is able to accommodate a new job that 
needs to be added to the system at any time. However, 
addition of a new job expands the problem size 
exponentially.  

The solution proposed by various researchers, 
using Ant colony Optimisation [5] has not been able to 
handle the dynamic nature of the system efficiently. 

We propose a Particle swarm optimization (PSO) 
based scheme to the dynamic job shop scheduling 
problem that will guarantee optimum processing time. 
Though it cannot assure optimal solution at all times due 
to the heuristic nature of the algorithm and the NP Hard 
nature of the problem, PSO is very promising. PSO [1] is 
based on the behaviour of social interaction and 
communication such as bird flocking and fish schooling. 
PSO does not employ the filtering operations which is the 
case in crossover or mutation. Nonetheless, it maintains 
communication in the population and keeps all the 
particles (Members of the population) informed. This 
enables the particles to frame themselves towards the best 
position in the search space. 

In a PSO algorithm, each individual who works 
for the best fit is called particle. Velocity is a rate at which 
the particle is moving towards achieving the best fit. 
There are two criteria based on which the best fit can be 
measured. Global Solution is the best fit obtained so far 
by any particle in the population. Local solution is the 
best fit obtained so far by the particles in the 
neighbourhood.

Some general rules of the JSSP that are followed in DJSSP 
are: 

1. All jobs have equal priority 
2. Every job visits the machine only once 

3. No machine pre-emption is allowed 
4. In a machine, only one job can be processed at once 
5. All machines are available initially, at 0th instance. 
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The nature of arrival of a new job to the system is 
random. Our work proposes a system to handle this 
using PSO. 

II. RELATED WORK 
Kennedy, J.; Eberhart, R [1], proposed the 

conventional Particle Swarm Optimization method for 
optimization of non-linear functions.  

This was further applied to the traditional JSSP 
by several methods [2][3]. However PSO applied on some 
variations of JSSP had different goals such as 
optimization of multi-objective flexible JSSP, flow shop 
sequencing, minimum make span etc. The method which 
comes close is the Ant Colony Optimization (ACO). 
However the comparison of the PSO with ACO makes us 
realize the following drawbacks of ACO [4].  

1. There are some difficulties in the theoretical analysis 

2. The Probability Distribution changes with each 
iteration 

3. The time to reach the best solution is uncertain. 

Thus the traditional PSO is more suitable to address this 
problem. Though there are many variants in PSO, the 
traditional PSO serves the purpose efficiently. 

Swarm Intelligence (SI) is another 
important optimization method [6] [7] i n  
evolutionary computation. SI is the property of 
a system whereby the collective behaviour of 
(unsophisticated) agents interacting locally with 
their environment cause coherent functional 
global patterns to emerge. 

  

III. PROPOSED WORK 
 

  

Figure 1 : Proposed Architecture 
 

 

Suppose that the search space is D-dimensional and there 
are p particles in the swarm. Particle i is located at 
position  

 

and has velocity 

 

where i=1, 2, ..., p 

As suggested by the PSO algorithm, each particle move 
towards its own best position (pbest), denoted as  

                        
            ..Eq (1) 

 and the best position of the whole swarm (gbest) is 
denoted as 
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  …                 Eq (2) 

And gets updated after each iteration. Each particle 
changes its position according to its velocity, which is 
randomly generated toward the pbest and gbest 
positions. 

This paper addresses the dynamic nature which 
is a variant in the traditional JSSP. The traditional PSO is 
applied on to the set of job(s) that arrive to the system at 
0th time instance when all the machines are available. 

The problem is formulated as: 

n is the total number of jobs 

m is the total number of machines. 

Typically the m*n matrix defines the problem size. 

t(i,j) denotes the processing time of job i on machine j, 

where i=1,2,3,…n  j=1,2,3,4,…n 

{p1,p2,…pn} denotes the permutation of jobs. 

The objective of this work is to find an optimal makespan 
M(p,j) 

           …                                     Eq(3) 

  Eq (4) 

Eq(5) 

Therefore, Makespan    …             Eq(6) 

 This is the stated objective function. 

Any job can be represented as  

 

                                        Eq (7) 

A, B, C represent the time at machine m1, m2, m3…mn  

The order of the machines for each job is fixed. Hence it 
cannot be optimal if we try re-sequencing the jobs and the 
machine sequence. We shall keep the job as a whole and 
not try breaking it up. We only consider the jobs converge 
to an optimal make span with less tardiness. 

Stage 1: When there are no jobs in the system. (0th 
Instance) 

All machines are available. 

Initialize the following parameters: 

The search space 

Number of particles (The population size) 

The random numbers, S1, S2 

The stopping criterion: 

o  Maximum number of iterations 
o  Stall point – Number of iteration the 

system waits for convergence at a single 
value.  

i.e. let us assume that Stall point=10. If there are no 
changes in the solution in consecutive 10 iterations, then 
that solution is considered as final and the algorithm gets 
terminated. 

 
Do 
    For every particle  
        Find the fitness value (The solution is able to 
calculate) 
        If the obtained fitness value is higher than the best 
fitness   previously obtained 
            set current value as the new Local-Solution. 
    End 
 
    Choose the particle with the best fitness value of all the 
particles as the Global-Solution 
    For each particle  
        Calculate velocity using the following equation: 
Update the Particle solution using the following 
equations:    

             …  Eq (8)  

    …   Eq (9) 

End 

Where v is the particle velocity, current Solution is the 
solution available for a particle at that instance. Rand () is 
a random number between (0,1). 

S1, S2 are the constants  

Stage 2: Handling randomly arriving jobs 

The system is aware of all the existing Jobs and 
the corresponding machine queue status. Since the pre-
emption of machine is not allowed, it is essential that we 
do not take away the jobs that are already allotted to the 
machine. However the jobs outside the machine but 
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allotted in the machine queue may be considered for re-
sequencing. As stated earlier, the objective is to find the 
best sequence considering all the machines that give us 
the best make-span. 

To handle the new job that arrives, from the available 
list of Job-Machine combination, freeze all the machine 
allocations made until time t=arrival time of the new job. 

1. For the new schedule, rule out all the Job-
Machine combinations existing in the queue 
before time t 

2. For every machine, check if there is any lag that 
appears beyond time t. If yes, set the available 
time of that machine as t+t1, t1 being the time lag 
existing from the previous schedule 

3. Discard all the schedules made after time=t in the 
previous stage 

4. Check the availability time of all the machines 
and update the heuristics 

5. Run the stage 1 method with starting time=t, thus 
obtaining the solution. 

Step 1 deals with the “no-pre-emption rule” i.e. 
the jobs that are already getting processed in a 
machine cannot be taken away until they are 
completed. 

In step-2, since the system maintains the queue 
status of all machines, it also has details of the 
“availability time index” of the machines. If a job 
under processing takes time>t, then the available time 
shall be set based on the time lag. 

In step 3, apart from all the jobs that are currently 
occupying the machine at time=t (not the ones in the 
respective machine queues), we dissolve all other 
schedules made and re-consider them. 

In step 4, we update the “availability time index” 
of all the machines according to the PSO algorithm 
which helps us in find the new sequence. 

Step 5 is the repetition of stage 1, with the input 
as  the set of job after time=t and the starting time is 
set as t.  

 

 

 

 

Stage 2 Algorithm 

 

 

 

 
 

 

 

 

 

 

 

 

 

IV.  RESULTS AND DISCUSSIONS 
https://www.youtube.com/watch?v=yV2g_TUHFTw&
feature=youtu.be 

The visual demo re-iterates the theoretical 
prediction that the system is capable of performing 
as per the requirements. The results have proved 
that the system is robust, scalable and has very less 
computational complexity.The following snap shots 
provide a deeper insight. 

 

Fig 2 : The Graphical User Interface 

Do 
   Set Arrival time=t 
  If 
     Mi ∈ M(1….n) holding any job at time=t 
     Lock the schedule 
     Set available time t1=end time of current job 
   For every machine M(1…n) - Mi 

Set machine availability time=t  
    End 
  End  
 For every Machine Queue  
     For every job  
     If  Scheduled time of process > t 
         Discard the schedule 
     End 
   End 
End 
Update parameter 1 p1: Time of availability of every machine 
Update parameter 2 p2: Time of arrival of new job 
Update Parameter 3 p3:  List of Jobs to be processed 
Stage 1 (p1,p2,p3) 
End 
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Case Study 1 

Stage 1: 0th Instance of Time 

 

        Fig 3 : The Machine sequence Matrix 

 

 

Fig 4 : The corresponding Time Matrix 

 

 

 

 

Fig 5 : Output for the Input at time=0 
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Fig: 6 The corresponding Convergence Graph 

 

 

Fig 7 : Arrival of now job at t=5 

 

 

 

 

 

Iteration           Best                Mean 
    No.              f(x)                f(x) 
----------------------------------------------- 
    1                  20               23.58 
    2                  19               22.24 
    3                  19               21.86 
    4                  19                21.4 
    5                  19               21.16 
    6                  19               20.96 
    7                  19               20.74 
    8                  19               20.52 
PSO Terminated: Convergence Achieved  

 

Fig 9: Output accommodating the New Job 

 

 

Fig 10: The Problem of size 10*10

  

Fig 8:  Gantt Chart of the sequence after new arrival
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Case-2 

 

 

Fig 11: Corresponding Schedule 
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Fig 12: Convergence Graph for 10*10 problem 

 

The above results and Gantt-graphs show the 
output obtained i.e. the sequence of jobs that yield the 
best completion time.  It was observed that even on a 
system with average configuration, the time taken to run 
the heuristics was very less. Currently, this deployment is 
able to handle an input matrix of size 10*10. However, 
scalability is very easy to accomplish by a revision of the 
factors – The maximum iterations possible and the Swarm 
population size at the beginning of the process as 
mentioned in the algorithm.  
 
 

V. CONCLUSION 

This paper addresses the DJSSP, which is a 
significant problem in the real manufacturing scenario. 
The proposed method uses very minimal computational 
time to produce an optimal solution. This concept has 
been implemented using a user friendly interface on a 
pre-defined dataset and the results obtained meet 
expectations.  

The method is proven to be scalable and 
performs as expected. This method can be further 

enhanced to make it more usable in the real environment 
by considering several additional factors such as the 
machine shifts, calendars and machine breakdown 
scenario. A set of self-sufficient agents which keep a 
check on machine status may be able to achieve the goal. 
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