
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 505
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Dynamic Job Shop Scheduling with
Sequence Dependent Routes using PSO

1. Sai Prasanna M S 2. Surbhi Agrawal
Dept of CSE , PESIT South Campus, Bangalore, Karnataka, India

(1)saiprasanna06@gmail.com, (2) surbhiagrawal@pes.edu

Abstract— Job shop scheduling (JSS) is a problem which involves an assignment of a set of tasks to the machines in a predefined
sequence in order to optimize one or more objectives considering job performance measures of the system. It’s a multi-objective,
multi-criteria optimization problem. A job shop environment consists of ‘n’ jobs. Each job has a given machine routine in which some
machines could be given a “miss”. The JSS could be considered as a queuing system that consists of machines and jobs where each
job demands a specified sequence (routing) on the machines and involves certain amount of processing time. In the dynamic JSSP,
the problem size is not fixed. The jobs arrive randomly and addition of each job increases problem size exponentially. The optimal
resource scheduling/re-scheduling for a mechanical manufacturing shop in reasonable computational time is achieved using particle
Swarm Optimization (PSO). PSO (Particle swarm optimization) is a meta-heuristic method that calculates a combination of the
sequence of the jobs yielding the least processing time or the make span (Best completion case)

Keywords— DJSSP (Dynamic Job Shop Scheduling Problem), Particle Swarm Optimisation, Meta-heusistic, Optimization.

I. INTRODUCTION
The machine Scheduling problem has been the

one of the oldest problems of its kind. The inter-
disciplinary nature of the problem expands its application
in manufacturing systems, computer design, logistics etc.
Among these, the traditional job shop scheduling
problem is most frequently encountered.

The traditional JSSP has a fixed problem size,
each job having a pre-defined sequence of machines and
processing time. Under standard assumptions the
processing time shall include the setup time as well. The
problem is to find a solution that gives the minimum
possible scheduling time for the given jobs. Since JSSP is
one of the hardest combinatorial optimization problems,
the solution attracts employing meta-heuristic methods
because of its innate inflexible nature.

The Dynamic JSSP is a new method to break
away from the static nature of the JSSP solution. Here the
system system is able to accommodate a new job that
needs to be added to the system at any random time. The
complexity here is able to accommodate a new job that
needs to be added to the system at any time. However,
addition of a new job expands the problem size
exponentially.

The solution proposed by various researchers,
using Ant colony Optimisation [5] has not been able to
handle the dynamic nature of the system efficiently.

We propose a Particle swarm optimization (PSO)
based scheme to the dynamic job shop scheduling
problem that will guarantee optimum processing time.
Though it cannot assure optimal solution at all times due
to the heuristic nature of the algorithm and the NP Hard
nature of the problem, PSO is very promising. PSO [1] is
based on the behaviour of social interaction and
communication such as bird flocking and fish schooling.
PSO does not employ the filtering operations which is the
case in crossover or mutation. Nonetheless, it maintains
communication in the population and keeps all the
particles (Members of the population) informed. This
enables the particles to frame themselves towards the best
position in the search space.

In a PSO algorithm, each individual who works
for the best fit is called particle. Velocity is a rate at which
the particle is moving towards achieving the best fit.
There are two criteria based on which the best fit can be
measured. Global Solution is the best fit obtained so far
by any particle in the population. Local solution is the
best fit obtained so far by the particles in the
neighbourhood.

Some general rules of the JSSP that are followed in DJSSP
are:

1. All jobs have equal priority
2. Every job visits the machine only once

3. No machine pre-emption is allowed
4. In a machine, only one job can be processed at once
5. All machines are available initially, at 0th instance.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 506
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The nature of arrival of a new job to the system is
random. Our work proposes a system to handle this
using PSO.

II. RELATED WORK
Kennedy, J.; Eberhart, R [1], proposed the

conventional Particle Swarm Optimization method for
optimization of non-linear functions.

This was further applied to the traditional JSSP
by several methods [2][3]. However PSO applied on some
variations of JSSP had different goals such as
optimization of multi-objective flexible JSSP, flow shop
sequencing, minimum make span etc. The method which
comes close is the Ant Colony Optimization (ACO).
However the comparison of the PSO with ACO makes us
realize the following drawbacks of ACO [4].

1. There are some difficulties in the theoretical analysis

2. The Probability Distribution changes with each
iteration

3. The time to reach the best solution is uncertain.

Thus the traditional PSO is more suitable to address this
problem. Though there are many variants in PSO, the
traditional PSO serves the purpose efficiently.

Swarm Intelligence (SI) is another
important optimization method [6] [7] i n
evolutionary computation. SI is the property of
a system whereby the collective behaviour of
(unsophisticated) agents interacting locally with
their environment cause coherent functional
global patterns to emerge.

III. PROPOSED WORK

Figure 1 : Proposed Architecture

Suppose that the search space is D-dimensional and there
are p particles in the swarm. Particle i is located at
position

and has velocity

where i=1, 2, ..., p

As suggested by the PSO algorithm, each particle move
towards its own best position (pbest), denoted as

 ..Eq (1)

 and the best position of the whole swarm (gbest) is
denoted as

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 507
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 … Eq (2)

And gets updated after each iteration. Each particle
changes its position according to its velocity, which is
randomly generated toward the pbest and gbest
positions.

This paper addresses the dynamic nature which
is a variant in the traditional JSSP. The traditional PSO is
applied on to the set of job(s) that arrive to the system at
0th time instance when all the machines are available.

The problem is formulated as:

n is the total number of jobs

m is the total number of machines.

Typically the m*n matrix defines the problem size.

t(i,j) denotes the processing time of job i on machine j,

where i=1,2,3,…n j=1,2,3,4,…n

{p1,p2,…pn} denotes the permutation of jobs.

The objective of this work is to find an optimal makespan
M(p,j)

 … Eq(3)

 Eq (4)

Eq(5)

Therefore, Makespan … Eq(6)

 This is the stated objective function.

Any job can be represented as

 Eq (7)

A, B, C represent the time at machine m1, m2, m3…mn

The order of the machines for each job is fixed. Hence it
cannot be optimal if we try re-sequencing the jobs and the
machine sequence. We shall keep the job as a whole and
not try breaking it up. We only consider the jobs converge
to an optimal make span with less tardiness.

Stage 1: When there are no jobs in the system. (0th
Instance)

All machines are available.

Initialize the following parameters:

The search space

Number of particles (The population size)

The random numbers, S1, S2

The stopping criterion:

o Maximum number of iterations
o Stall point – Number of iteration the

system waits for convergence at a single
value.

i.e. let us assume that Stall point=10. If there are no
changes in the solution in consecutive 10 iterations, then
that solution is considered as final and the algorithm gets
terminated.

Do
 For every particle
 Find the fitness value (The solution is able to
calculate)
 If the obtained fitness value is higher than the best
fitness previously obtained
 set current value as the new Local-Solution.
 End

 Choose the particle with the best fitness value of all the
particles as the Global-Solution
 For each particle
 Calculate velocity using the following equation:
Update the Particle solution using the following
equations:

 … Eq (8)

 … Eq (9)

End

Where v is the particle velocity, current Solution is the
solution available for a particle at that instance. Rand () is
a random number between (0,1).

S1, S2 are the constants

Stage 2: Handling randomly arriving jobs

The system is aware of all the existing Jobs and
the corresponding machine queue status. Since the pre-
emption of machine is not allowed, it is essential that we
do not take away the jobs that are already allotted to the
machine. However the jobs outside the machine but

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 508
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

allotted in the machine queue may be considered for re-
sequencing. As stated earlier, the objective is to find the
best sequence considering all the machines that give us
the best make-span.

To handle the new job that arrives, from the available
list of Job-Machine combination, freeze all the machine
allocations made until time t=arrival time of the new job.

1. For the new schedule, rule out all the Job-
Machine combinations existing in the queue
before time t

2. For every machine, check if there is any lag that
appears beyond time t. If yes, set the available
time of that machine as t+t1, t1 being the time lag
existing from the previous schedule

3. Discard all the schedules made after time=t in the
previous stage

4. Check the availability time of all the machines
and update the heuristics

5. Run the stage 1 method with starting time=t, thus
obtaining the solution.

Step 1 deals with the “no-pre-emption rule” i.e.
the jobs that are already getting processed in a
machine cannot be taken away until they are
completed.

In step-2, since the system maintains the queue
status of all machines, it also has details of the
“availability time index” of the machines. If a job
under processing takes time>t, then the available time
shall be set based on the time lag.

In step 3, apart from all the jobs that are currently
occupying the machine at time=t (not the ones in the
respective machine queues), we dissolve all other
schedules made and re-consider them.

In step 4, we update the “availability time index”
of all the machines according to the PSO algorithm
which helps us in find the new sequence.

Step 5 is the repetition of stage 1, with the input
as the set of job after time=t and the starting time is
set as t.

Stage 2 Algorithm

IV. RESULTS AND DISCUSSIONS
https://www.youtube.com/watch?v=yV2g_TUHFTw&
feature=youtu.be

The visual demo re-iterates the theoretical
prediction that the system is capable of performing
as per the requirements. The results have proved
that the system is robust, scalable and has very less
computational complexity.The following snap shots
provide a deeper insight.

Fig 2 : The Graphical User Interface

Do
 Set Arrival time=t
 If
 Mi ∈ M(1….n) holding any job at time=t
 Lock the schedule
 Set available time t1=end time of current job
 For every machine M(1…n) - Mi

Set machine availability time=t
 End
 End
 For every Machine Queue
 For every job
 If Scheduled time of process > t
 Discard the schedule
 End
 End
End
Update parameter 1 p1: Time of availability of every machine
Update parameter 2 p2: Time of arrival of new job
Update Parameter 3 p3: List of Jobs to be processed
Stage 1 (p1,p2,p3)
End

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 509
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Case Study 1

Stage 1: 0th Instance of Time

 Fig 3 : The Machine sequence Matrix

Fig 4 : The corresponding Time Matrix

Fig 5 : Output for the Input at time=0

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 510
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig: 6 The corresponding Convergence Graph

Fig 7 : Arrival of now job at t=5

Iteration Best Mean
 No. f(x) f(x)

 1 20 23.58
 2 19 22.24
 3 19 21.86
 4 19 21.4
 5 19 21.16
 6 19 20.96
 7 19 20.74
 8 19 20.52
PSO Terminated: Convergence Achieved

Fig 9: Output accommodating the New Job

Fig 10: The Problem of size 10*10

Fig 8: Gantt Chart of the sequence after new arrival

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 511
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Case-2

Fig 11: Corresponding Schedule

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 512
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig 12: Convergence Graph for 10*10 problem

The above results and Gantt-graphs show the
output obtained i.e. the sequence of jobs that yield the
best completion time. It was observed that even on a
system with average configuration, the time taken to run
the heuristics was very less. Currently, this deployment is
able to handle an input matrix of size 10*10. However,
scalability is very easy to accomplish by a revision of the
factors – The maximum iterations possible and the Swarm
population size at the beginning of the process as
mentioned in the algorithm.

V. CONCLUSION

This paper addresses the DJSSP, which is a
significant problem in the real manufacturing scenario.
The proposed method uses very minimal computational
time to produce an optimal solution. This concept has
been implemented using a user friendly interface on a
pre-defined dataset and the results obtained meet
expectations.

The method is proven to be scalable and
performs as expected. This method can be further

enhanced to make it more usable in the real environment
by considering several additional factors such as the
machine shifts, calendars and machine breakdown
scenario. A set of self-sufficient agents which keep a
check on machine status may be able to achieve the goal.

VI. REFERENCES

1. Kennedy, J.; Eberhart, R. (1995). "Particle Swarm
Optimization". Proceedings of IEEE International
Conference on Neural Networks IV. pp. 1942–1948.
doi:10.1109/ICNN.1995.488968

2. http://cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf

3. http://ar.newsmth.net/att/22f4075b16b1d1/An_Analysi
s_of_Particle_Swarm_Optimizers.pdf

4. An effective hybrid particle swarm optimization
algorithm for multi-objective flexible job-shop
scheduling problem

Guohui Zhang, Xinyu Shao, Peigen Li, Liang
Gao,Computers & Industrial Engineering 56 (2009)
1309–1318

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 513
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

5. An ant colony system for permutation & flow-shop
sequencing Kuo-Ching Yinga, Ching-Jong Liaoa,
Computers & Operations Research 31 (2004) 791–801,
Elsevier

6. C. Li and S. Yang. A generalized approach to
construct benchmark problems for dynamic
optimization. Proceedings of the 7th Int.
Conf. on Simulated Evolution and Learning, pp. 391-
400, 2008. Springer.

7. C. Li and S. Yang. An adaptive learning
particle swarm optimizer for function
optimization. Proceedings of the 2009 IEEE
Congress on Evolutionary Computation, pp. 381-388,
2009. IEEE Press.

8. Branke, T. Kaußler, C. Schmidth, and H.
Schmeck, “A multi-population approach to
dynamic optimization problems” in Proc. 4th
Int. Conf. Adaptive Computing in Design and
Manufacturing, 2000, pp. 299-308.

9. J. Branke, Evolutionary Optimization in Dynamic
Environments,

10. Kluwer Academic Publishers, 2002.
C. Wei, Z. He, Y. Zhang and W. Pei,
“Swarm directions embedded in fast
evolutionary programming,” in Proc. Congr.
Evolomput.,vol. 2,2002.

http://www.ijser.org/

	I. Introduction
	II. Related work
	III. proposed work
	IV. Results and discussions
	V. conclusion
	VI. references

